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LElTER TO THE EDITOR 

Thermodynamic phase transition in the Dicke model for 
multi-level systems 

R Gilmore 
Physics Department, University of South Florida, Tampa, Florida 33620, USA 

Received 5 April 1977 

Abstract. Thermodynamic critical behaviour between excited states of a multi-level system 
is characterised by four distinct values of the appropriate coupling constant A. 

A second-order phase transition occurs in the 2-level Dicke model provided the 
coupling constant A exceeds a critical value A, determined by A;/EW = 1. Here 
E = e2 -e1 is the energy difference between the upper and lower atomic states, and w is 
the energy of the approximately resonant photon mode. Throughout we take h = 1, A 
real and A > 0. 

In the 3-level extension of the Dicke model, the thermodynamic critical properties 
may or may not be similar. We assume the atom-field interaction occurs between levels 
1 and 2. If the third level has energy exceeding cl, the critical properties are as described 
in the opening paragraph. If the third level has energy eo, eo < < E ~ ,  then the 
thermodynamic critical properties are characterised by four critical values A < A 2  < 
A 3 < A 4  of the coupling constant A. 

These four values can be determined from the free energy per particle of the 
interacting N-atom, single field mode system. This in turn can be estimated using field 
coherent states (Wang and Hioe 1973), atomic coherent states (Hepp and Lieb 1973), 
the coupled order parameter method (Gilmore and Bowden 1976a), or a bifurcation 
analysis (Gilmore and Bowden 1976b). It is convenient to introduce the order 
parameter x = (u /dN) ,  where U is the photon annihilation operator. The free energy 
FIN is determined by (Gilmore 1977) 

In figure 1 we plot those values of x ( P )  for which @(p, x )  is stationary, for several values 
of A. The potential @(PI x )  always has a stationary value for x ( P )  = 0. This solution is 
called the disordered branch. The primary branches x ( P )  # 0 may be unstable, meta- 
stable, or stable, as indicated. 
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Figure 1. Values of the order parameter x @ )  for which the potential a(& x )  is stationary, 
for seven values of A. For primary branches: the chain curve denotes stable branches, the 
full curve denotes metastable branches and the broken curve denotes unstable branches. 

The four critical values of A are determined by searching for the smallest value of A 
for which: 

A': a@?, x )  has a metastable state at T = 0, x # 0; 
A2: @@?, x) has a stable state at T =  0, x # 0; 
A3: a@, x )  has only unstable bifurcating solutions; and 
A4:  a@, x) has a stable bifurcating solution. 

The critical values A l  and A 2  are determined by searching for solutions x # 0 of 
a@@,x)/ax = O  in the T+O limit. Such solutions exist for A2>A:= 
1 + [ ~ ( E I  - - el)] where A' = A ' / U  ( € 2  - e t ) .  For A > A there are two non-zero 
solutions, one unstable, the other metastable until A = A 2  determined by A2 - A;' = 

The critical values A 3  and h4 are determined by expanding a(@, x) in powers of x, 
and looking for changes of stability along the disordered branch x = 0. To fourth order 
this expansion is 

2 [ ( E t -  E O ) / ( E 2  - €1)11'2. 

a(@, x ) = - ~ - '  I n z @ ) + ~ ~ ( p ) x ~ + ~ ~ ( P ) x ~  

z ( P ) = e  -6% + + 

Primary branches bifurcate from the disordered branch when C2(P) = 0. The smallest 
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value A = A 3  for which bifurcation occurs is determined from maxTE[o,co) A$[(e-"l- 
e-B'2)/z(B)] = 1. The stability of the bifurcating solutions is determined by the sign of 
C4(/3) at the bifurcation points. This is always negative (unstable) for the branches 
bifurcating at lower temperature (figure 1, E2, F2, G2). It is also negative for A in the 
range A 3 s A  <A4. The value A 4  is determined by setting C4(&)= 0, where pt is the 
higher temperature solution of C2(/3) = 0. 

The critical properties of the 3-level system with coupling between the two excited 
levels are determined by the value of A as follows (figure 1). 

A < A*. ( a / v " )  = o at all temperatures. 
A < A  < A 2  (curve A, A = AA). At sufficiently low temperature a metastable ordered 

state exists. 
A 2  < A < A 3  (curves B, C, D, AB < Ac < AD).  At low temperature an ordered state 

exists. For AB the ordered state is metastable to the right of the mark b on the horizontal 
axis of figure 1. To the left, the disordered state is metastable. A first-order phase 
transition occurs at this point, and hysteresis may occur. The transition temperature 
increases as A increases. These first-order transitions are not surrounded by spinodal 
points. 

A 3  < A  < A 4  (curve E, A = A E ) .  Two primary branches bifurcate from the disordered 
branch. The low temperature branch E2 is unstable. The high temperature branch El is 
initially unstable, with T increasing as x increases. However, this branch eventually 
turns around, becoming metastable, then stable, as x increases further and T decreases 
towards zero. A first-order phase transition occurs at e. Unlike the transitions at b, c, 
and d, this transition is surrounded by two spinodal points where dT/dx = 0 for x on 
branch E l .  These points are the bifurcation and turn-around points. The disordered 
branch is stable for T greater than e, metastable for T between e and the El bifurcation 
point, unstable between the E2 and El bifurcation points, and metastable again below 
the Ez bifurcation point. The range of values of A for which spinodal points occur is 
very small because (A4 - A 3)/A4 << 1. 

A = A 4  (curve F, A = A F = A ~ ) .  The bifurcation point A = A 4 ,  /3 =Pt, X F ~  = 0 is a 
tricritical point. 

A4 < A  (curve G, A = AG) .  The low temperature bifurcating branch G2 is unstable, 
while the high temperature branch is stable. The disordered branch is stable above the 
bifurcation point for GI, unstable between the bifurcation points of GZ and GI, and 
metastable below the GZ bifurcation. A second-order phase transition occurs at the 
higher solution of C2(p) = 0. 

The thermodynamic critical properties for r-level systems are qualitatively the same 
as those for 3-level systems. Let € 1  < E Z <  . . . < E ,  be the ordered non-degenerate 
levels of the atomic systems, with wji the energy of the near resonant photon mode 
connecting levels j and i ( j  > i). The free energy for the appropriate Dicke Hamiltonian 
(Gilmore and Bowden 1976b, equation (7.7))can be computed by the methods outlined 
above. The results are as follows, with A f =  lAji12/wii(q-€i)  and z (p )=  Z;=, e-8ck. 

j >  i = 1. A second-order phase transition occurs if Ai, > 1. The critical tempera- 
ture Tc is determined by 

The associated order-parameter behaviour as a function of temperature is essentially as 
given in Gilmore and Bowden (1976a, figure 1). 
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j > i > 1. The four critical values of Aii are given by 

and (Aii)4 is determined by the simultaneous vanishing of C2(p) and C43) (tricritical 
point): 

The associated order-parameter behaviour as a function of temperature is essentially as 
given in figure 1, and the critical properties are as discussed above. 

It is a pleasure to thank C U Hogle for aid with numerical computations. 
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